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SUMMARY
We investigatedwhethermelanoma is hierarchically organized into phenotypically distinct subpopulations of
tumorigenic and nontumorigenic cells or whethermostmelanoma cells retain tumorigenic capacity, irrespec-
tive of their phenotype. We found 28% of single melanoma cells obtained directly from patients formed
tumors in NOD/SCID IL2Rgnull mice. All stage II, III, and IV melanomas obtained directly from patients had
common tumorigenic cells. All tumorigenic cells appeared to have unlimited tumorigenic capacity on serial
transplantation. We were unable to find any large subpopulation of melanoma cells that lacked tumorigenic
potential. None of 22 heterogeneously expressed markers, including CD271 and ABCB5, enriched tumori-
genic cells. Some melanomas metastasized in mice, irrespective of whether they arose from CD271� or
CD271+ cells. Many markers appeared to be reversibly expressed by tumorigenic melanoma cells.
INTRODUCTION

Cancer is a heterogeneous disease, involving differences

between tumors as well as between cancer cells within the

same tumor. Clonal evolution contributes to this heterogeneity

as cancer cells undergo irreversible genetic changes over time,

leading to functional and phenotypic differences (Nowell,

1976). Another explanation for heterogeneity within tumors

comes from the cancer stem cell model, which posits that

tumors are hierarchically organized, with a small subpopulation

of tumorigenic cells that generates phenotypically diverse nontu-

morigenic progeny in a manner similar to normal stem cell differ-
Significance

In cancers that follow a stem cell model, phenotypically distinct
nontumorigenic progeny in a hierarchical manner that resembl
our results indicate that primary cutaneous or metastatic m
diverse tumorigenic cells that undergo reversible phenotypic ch
noma is therefore not associated with a loss of tumorigenic pot
a phenotypic plasticity model in which phenotypic heterogene
tumorigenic cells rather than by irreversible epigenetic or gen
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entiation (Kleinsmith and Pierce, 1964; Lapidot et al., 1994; Reya

et al., 2001). These models are not mutually exclusive in that

cancers that follow the stem cell model would be expected to

undergo clonal evolution.

Evidence supports the cancer stem cell model in some acute

myeloid leukemias (Bonnet and Dick, 1997; Lapidot et al., 1994),

chronic myeloid leukemias (Eisterer et al., 2005; Neering et al.,

2007; Oravecz-Wilson et al., 2009), teratocarcinomas (Klein-

smith and Pierce, 1964), breast cancers (Al-Hajj et al., 2003),

brain tumors (Read et al., 2009; Singh et al., 2004), and colon

cancers (O’Brien et al., 2007; Ricci-Vitiani et al., 2007). In each

cancer, markers have been identified that distinguish small,
tumorigenic cells form abundant and phenotypically diverse
es normal stem cell differentiation. In contrast to this model,
elanomas from patients have common and phenotypically
anges in vivo.Most of the phenotypic heterogeneity inmela-
ential or organized in stable hierarchies. These data suggest
ity is driven largely by reversible changes within lineages of
etic changes.
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often rare, subpopulations of cancer cells that are greatly

enriched for tumorigenic/leukemogenic activity as compared

to unfractionated cancer cells. The same markers were con-

cluded to distinguish tumorigenic from nontumorigenic cells in

multiple patients, suggesting these cancers adopt reproducible

cellular hierarchies. Nonetheless, the robustness of some cancer

stem cell markers has been questioned (Joo et al., 2008; Ogden

et al., 2008; Wang et al., 2008) and it remains to be determined

how generalizable the model is.

Cancer stem cell studies have consistently found that cells

from nontumorigenic/nonleukemogenic cancer cell populations

are rarely able to form tumors/leukemias, even when assayed

under conditions permissive for tumorigenesis by small numbers

of cancer stem cells (Al-Hajj et al., 2003; Bonnet and Dick, 1997;

Lapidot et al., 1994; O’Brien et al., 2007; Oravecz-Wilson et al.,

2009; Read et al., 2009; Ricci-Vitiani et al., 2007; Singh et al.,

2004). In cancers that follow this model, nontumorigenic cells

have therefore irreversibly lost tumorigenic capacity or only

regain this capacity under rare circumstances. The cancer

stem cell and clonal evolution models have thus emphasized

the role of irreversible epigenetic and genetic changes in deter-

mining heterogeneity among cancer cells.

On the other hand, recent studies carried out in cancer cell

lines have suggested that some phenotypic and functional attri-

butes of tumorigenic cells can reversibly turn on and off (Mani

et al., 2008; Pinner et al., 2009; Roesch et al., 2010; Sharma

et al., 2010). This raises the question of whether reversible

changes are observed in primary cancers from patients and

whether many or few cells in these cancers can undergo such

changes. If most cells in a cancer can reversibly gain and

lose competence to form a tumor, then this is a transient state

rather than a hierarchically determined attribute possessed only

by rare cancer stem cells. These studies also raise the separate

question of whether phenotypic heterogeneity in patient tumors

is driven mainly by irreversible or reversible phenotypic changes.

The growth and metastasis of melanomas has been proposed

to be driven by a small subpopulation of melanoma stem cells

that can be distinguished from nontumorigenic melanoma cells

based on the expression of ABCB5 (Schatton et al., 2008) or

CD271 (Boiko et al., 2010). However, the xenotransplantation

experiments that were the basis for these conclusions were

carried out with assays in which an average of only 1 in 50,000

(see Table S3 in Boiko et al., [2010]) to 1 in 1,090,000 (Schatton

et al., 2008) unfractionated melanoma cells formed tumors. We

have found that the frequency of tumorigenic melanoma cells

that can be detected after xenotransplantation is highly assay-

dependent (Quintana et al., 2008). Bymaking a series of changes

in assay conditions, we increased the detectable frequency of

tumorigenic melanoma cells by several orders of magnitude.

We found that one in four cells obtained directly from patients

with primary cutaneous or metastatic melanomas are able to

form tumors after xenotransplantation into NOD/SCID IL2Rgnull

(NSG) mice (see Figure 3c in Quintana et al., [2008]). The conclu-

sion that many melanoma cells are capable of forming tumors

has been independently confirmed in primary mouse mela-

nomas (Held et al., 2010) and in human melanoma cell lines

(Roesch et al., 2010).

Although many melanoma cells are able to form tumors, it is

critical to assess whether melanoma is hierarchically organized
Can
into phenotypically distinct subpopulations of tumorigenic and

nontumorigenic cells. We have found that both CD133+ and

CD133� melanoma cells form tumors that exhibit similar

heterogeneity in CD133 expression, suggesting that CD133 is

reversibly expressed by tumorigenic melanoma cells rather

than distinguishing cells at different levels of a hierarchy

(Shackleton et al., 2009). The JARID1B histone demethylase

regulates the tumorigenic activity of melanoma cell lines and

can also reversibly turn on and off, raising the possibility that

competence to form a tumor is reversible (Roesch et al., 2010).

Brn2 and pigment are also reversibly expressed by cells from

melanoma cell lines as they metastasize in vivo (Pinner et al.,

2009). These studies raise the question of whether reversible

phenotypic plasticity is observed among many, or few, markers

in melanomas obtained from patients. We addressed this by

carrying out extensive functional and phenotypic analyses of

melanoma cells obtained from patients with stage II, III, and IV

disease.

RESULTS

We previously reported that 69 of 254 (27%) single, unselected

melanoma cells, isolated from four patient melanomas that had

been passaged as xenografts in mice, formed tumors after injec-

tion into NSG mice (Quintana et al., 2008). We have now

extended these studies to evaluate an additional 210 single,

unselected cells from melanomas that were either obtained

from other xenografts (n = 3 patient tumors, up to two passages

in mice) or directly from patients with stage III disease (n = 5

patient tumors). In each case, 15%–50% of single cells formed

subcutaneous tumors in NSG mice. Overall, 62 of 210 (30%)

single cells formed tumors, including 28% of single cells

obtained directly from patients (Table 1). These are minimum

estimates of the frequency of tumorigenic melanoma cells as

additional assay improvements could further increase the

frequency of tumorigenic cells that can be detected.

We also carried out limit dilution assays on cells obtained

directly from 11 additional patients with primary cutaneous

(stage II or III) or metastatic (stage III or IV) melanomas (Table 1).

The stage II melanoma (Breslow depth 3.3 mm, no ulceration,

2 mitoses/mm2), obtained directly from a patient, contained

a high frequency of tumorigenic cells, with five of six injections

of ten unselected cells forming tumors. Primary cutaneous

melanomas obtained directly from early stage patients with

a good prognosis can therefore contain a high frequency of

tumorigenic cells, though additional studies will be required to

determine whether some stage I or II melanomas contain less

frequent tumorigenic cells. The melanomas obtained directly

from stage III (n = 9) and IV (n = 1) patients also contained

high frequencies of tumorigenic cells. We have thus examined

the frequency of cells with tumorigenic potential in melanomas

obtained from 18 different patients (see Figure S1 available

online for patient details). We observed high frequencies of

tumorigenic cells in every case, irrespective of whether the

melanomas were obtained directly from patients (n = 16 cases)

or xenografted (n = 3), and irrespective of whether they were

primary cutaneous melanomas (n = 3), cutaneous or subcuta-

neous metastases (n = 4), or regional lymph node metastases

(n = 12).
cer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc. 511



Table 1. Summary of Tumor Formation by Single Cells or by Limit Dilution Analyses of Melanoma Cells from Sixteen Stage II, III, and IV

Patients

Tumor Origin Patient

AJCC Clinical Stage

(Tumor Site)

Tumors/Injections
Engraftment Rate (%)

or Tumorigenic Cell

Frequency (95% CI)

Cells Per Injection

1000 100 10 1

Single cell injections

Directly from patients 526 III (regional LN metastasis) 10/32 31%

528 III (regional LN metastasis) 4/27 15%

530 III (regional LN metastasis) 6/36 17%

534 III (regional LN metastasis) 15/30 50%

600 III (regional subcutaneous

metastasis)

9/30 30%

Xenograft (up to 2 passages) 405 III (regional LN metastasis) 6/15 40%

501 III (regional LN metastasis) 7/27 26%

491 III (regional subcutaneous

metastasis)

5/13 38%

ALL n = 8 62/210 30%

Limit dilution analysis

Directly from patients 610 II (cutaneous primary) 6/6 5/6 1/6 (1/2–1/15)

486 III (cutaneous primary) 6/6 6/6 2/3 1/9 (1/2–1/39)

597 III (cutaneous primary) 6/6 6/6 2/6 1/22 (1/8–1/62)

495 III (cutaneous metastasis) 6/6 6/6 1/3 1/20 (1/5–1/76)

510 III (regional LN metastasis) 6/6 3/3 >1/21

514 III (regional LN metastasis) 6/6 6/6 6/6 >1/11

631 III (regional LN metastasis) 6/6 3/3 >1/21

632 III (regional LN metastasis) 6/6 6/6 >1/11

633 III (regional LN metastasis) 6/6 6/6 >1/11

641 III (regional LN metastasis) 6/6 4/6 1/9 (1/3–1/25)

608 IV (distant subcutaneous

metastasis)

6/6 6/6 >1/11

ALL n = 11 24/24 66/66 44/54 1/6 (1/4–1/8)

AJCC: American Joint Committee on Cancer, CI: confidence interval, LN: lymph node. Melanoma cells weremixedwithMatrigel and injected into NSG

mice. Twenty-eight percent (44 of 155) of single cells obtained directly from patients formed tumors. AJCC is the clinical stage of the patient at the time

of melanoma removal. See also Figure S1.
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No Correlation between Tumorigenic Cell Frequency
and Tumor Growth Rate
A prediction that is commonly made based on the cancer stem

cell model is that aggressively growing tumors contain a higher

frequency of tumorigenic cells. Nonetheless, this prediction

has rarely, if ever, been tested. To evaluate this, we transplanted

single cells from melanomas obtained from 12 patients (see Fig-

ure S1) into NSGmice then compared the growth rates of the re-

sulting tumors with the percentage of single cells that were

tumorigenic. Tumors that arose from some patients grew quickly

(patients 205, 214, and 491), whereas tumors from other patients

grew slowly (patients 405, 481, 487, 501, 526, 528, 530, 534, and

600) (Figure 1A). Although fast-growing tumors grew an average

of 3 times faster than slow growing tumors in NSG mice (1.52 ±

0.64 versus 0.50 ± 0.30 mm/week; p < 0.0001), there was no

correlation with the frequency of tumorigenic cells in NSG mice

(Figure 1B). The melanoma that gave rise to the fastest growing

tumors (205) also had the lowest frequency (13%) of tumorigenic

cells, whereas a melanoma that gave rise to slow-growing

tumors (481) had a remarkably high frequency (70%) of tumori-
512 Cancer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc
genic cells. Tumors derived directly from patients tended to

grow more slowly than tumors derived from xenografts, but

these tumors did not tend to have lower frequencies of tumori-

genic cells (Figure 1A). Differences in the growth rates of mela-

nomas from different patients in NSG mice are not determined

by differences in tumorigenic cell frequency.

All Tumorigenic Melanoma Cells Appear Capable
of Indefinite Proliferation
To test whether the proliferative capacity of some tumorigenic

melanoma cells may be limited, as observed in some human

leukemia-initiating cells (Hope et al., 2004), we formed mela-

nomas in NSG mice from single cells derived from six patients

(32 tumors arose from the injection of 58 single cells). We then

serially transplanted 100 cell aliquots from each tumor into

secondary and tertiary NSG mice. All 32 single-cell derived

tumors gave rise to secondary tumors, and all 31 of the tumors

from which tertiary transplants were attempted gave rise to

tertiary tumors (Figures 2A and 2B; one secondary tumor could

not be retransplanted due to the unexpected death of the
.
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Figure 1. Lack of Correlation between Growth Rate and Tumori-

genic Cell Frequency in Human Melanomas

(A) Tumor development after subcutaneous injection into NSG mice of single

melanoma cells derived from 12 patients with metastatic disease. Dots repre-

sent individual tumors and are plotted against tumor growth rate (left axis).

Lines represent the mean growth rate of all tumors derived from each patient.

Red stars represent the proportion of single cells derived from each patient

melanoma that formed tumors (right axis). Scale bars represent 1 cm.

(B) Linear regression analysis of the mean (±standard deviation [SD]) growth

rate of clonal tumors derived from the same 12 patients plotted against the

empirically determined frequency of tumorigenic cells in their parent tumors.

r2 value shows the Pearson correlation coefficient, indicating no significant

correlation between tumor growth rate in NSG mice and tumorigenic cell

frequency in NSG mice.

Cancer Cell

Phenotypic Plasticity in Melanoma
mouse). In all cases, the single melanoma cells appeared to be

capable of unlimited growth, necessitating euthanasia of the

mice. Tumor growth rate significantly increased in a few cases

between secondary and tertiary transplants (see asterisk in

Figures 2E–2H, p < 0.05; primary tumor growth rates could not

be compared to secondary tumors because primary tumors

were initiated with single cells while secondary and tertiary

tumors were initiated with 100 cells). In no case did the rate of

tumor growth decrease during serial passaging (Figures 2C–2H).

We have thus been unable to detect any tumorigenic melanoma

cells that have limited tumorigenic potential in vivo.

Both ABCB5– and ABCB5+ Melanoma Cells
Can Form Tumors
We previously published (Quintana et al., 2008) that four markers

(CD133, CD166, L1-CAM, and CD49f) were not able to distin-

guish tumorigenic from nontumorigenic melanoma cells. We

have now tested 18 additional markers (ABCB5, CD271, MCAM,

E-Cadherin, N-Cadherin, c-kit, CD29, CD44, CD49d, CD49b,

A2B5, HNK1, CD54, CD9, CD151, CD10, L6, and CD49e) that

we found to be heterogeneously expressed among humanmela-
Can
noma cells out of 85markers that we examined (for a summary of

all tumors and markers see Figure S1 and Table S2). We present

data in greatest detail for ABCB5 (Figure 3) and CD271 (Figure 4).

We evaluated ABCB5 expression by flow-cytometry in

melanomas from nine patients using dissociation conditions

and antibody provided by Schatton et al. (2008). We did not

independently test the specificity of this antibody but rather

relied on published results (Frank et al., 2003). We detected

staining with this antibody in a minority of cells from four of these

tumors, ranging from 2.9% to 5.3% of cells (Figure 3A). Because

the detectable frequency of ABCB5+ cells (0%–5.3%) was much

lower than the frequency of tumorigenic cells (11%–70%) in all

tumors, cells with tumorigenic potential could not reside

exclusively within the ABCB5+ subpopulation (Figure 3A). We

observed no significant difference in the frequency of tumori-

genic cells between melanomas with ABCB5+ cells and mela-

nomas without ABCB5+ cells (27 ± 13% and 27 ± 25% respec-

tively; mean ± standard deviation [SD], p = 0.97).

To compare the tumorigenic potential of ABCB5� and

ABCB5+ melanoma cells, we separated these cells by flow

cytometry from tumors derived from three different patients

(Figures 3B and 3C) and transplanted them into NSG mice with

Matrigel. All injections of 50 cells, and most injections of 10 cells,

formed tumors, irrespective of whether unfractionated, ABCB5�

cells, or ABCB5+ cells were injected (Figure 3D). We were there-

fore unable to detect any difference in the tumorigenic capacity

of ABCB5� and ABCB5+ melanoma cells.

Both CD271– and CD271+ Melanoma Cells
Can Form Tumors
We also examined CD271 expression in primary cutaneous and

metastatic melanomas from 20 patients (Figure 4A). CD271

expression was analyzed in some tumors immediately after

removal from the patient (n = 13), and in other tumors after %2

passages as a xenograft (n = 9; tumors from some patients

were examined both ways). CD271 was heterogeneously

expressed in every tumor tested (Figures 4A and 4C), but the

range of expression was large: 1%–91% of cells were CD271+.

Indeed, CD271+ cells accounted for >50% of the cells in 4 of

13 tumors obtained directly from patients (Figure 4A). Overall,

we observed no correlation between the frequency of CD271+

cells and the frequency of tumorigenic cells (r2 = 0.004, Fig-

ure 4B). In some cases, the frequency of CD271+ cells was

much lower than the frequency of tumorigenic cells (see xeno-

grafts from patients 481, 487, 526, 534, and tumor directly

from patient 610), whereas in other cases CD271+ cell frequency

was much higher than the frequency of tumorigenic cells (see

xenografts frompatients 491 and 530). This suggests that neither

theCD271+ nor theCD271� cell fraction can consistently contain

all tumorigenic melanoma cells.

To directly compare the tumorigenic potential of CD271� and

CD271+ melanoma cells, we isolated these cells from xeno-

grafted tumors derived from three patients (491, 526, and 534;

%2 passages; Figures 4C and 4D), and injected into NSG mice

with Matrigel. In each case, tumors arose from only 10 CD271�

or 10 CD271+ cells and were at least as likely to arise from

CD271� as from CD271+ cells (Figure 4D). We also compared

the tumorigenicity of CD271� and CD271+ cells from xenografts

from three other patients in NSG mice, but this time without
cer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc. 513
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Figure 2. Tumorigenic Human Melanoma

Cells Exhibit Indefinite Proliferative Poten-

tial on Serial Transplantation

(A) Eight clonal tumors were established from

single cells obtained from patient 481. One

hundred cell aliquots from each of these tumors

were serially transplanted into secondary and

tertiary NSGmice. All clonal tumors were success-

fully passaged twice after being established from

single cells, suggesting that all tumorigenic cells

had unlimited tumorigenic potential. Scale bar

represents 1 cm.

(B) Clonal tumors derived from melanomas from

five other patients were passaged similarly. Every

attempt was successful.

(C–H) Tumor growth rates for patients 481 (C), 501

(D), 526 (E), 528 (F), 530 (G), and 534 (H). Each

group of three bars indicates the growth rates of

a clonal tumor (white) and its descendent first

(gray) and second (black) generation tumors.

During each passage, two to six secondary or

tertiary injections were carried out for each tumor

line and nearly all such injections gave rise to

tumors. The growth rates of these tumors are

shown as mean ± SD (*p < 0.05 by t test indicates

significantly different growth rates in secondary

and tertiary tumors).

Cancer Cell
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Matrigel. Again, both CD271� and CD271+ cells readily formed

tumors and neither fraction was enriched for tumorigenic activity

(Table S1).

We carried out similar experiments using CD271� and CD271+

cells from six melanomas obtained directly from patients,

including two primary cutaneous tumors, one from a patient

with good prognosis stage II disease (Figures 4A, 4C, and 4D).

Similar to xenografted tumors, tumors arose readily from

CD271� and CD271+ cells from the four metastatic melanomas

(patients 600, 608, 631, and 641), (Figure 4D). In the two primary

cutaneous melanomas (patients 597 and 610), tumors were

more likely to arise from CD271� cells (Figure 4D). This is remi-

niscent of observations from primary mouse melanomas, which

also exhibited tumorigenic activity from both the CD271� and

CD271+ fractions, but more tumorigenic activity from CD271�

cells (Held et al., 2010). In our experiments, the less tumorigenic

CD271+ cells were a minor subpopulation (2%–12% of cells) in

primary cutaneous melanomas, rather than the bulk of tumor

cells. It remains unclear whether the reduced tumorigenic

capacity of CD271+ cells in these experiments was determined

by genetic, epigenetic, or environmental differences.
514 Cancer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc.
Both CD271+ and CD271– Cells
Form Tumors that Metastasize
We extended our studies to evaluate

spontaneous metastasis by melanoma

cells. Transplanted melanoma cells could

disseminate as a result of inadvertent

intravascular injection rather than from

spontaneous metastasis; therefore, we

first tested whether metastases arose in

mice injected subcutaneously with single

melanoma cells. NSG mice with subcuta-
neous tumors that arose from single cells from melanoma 481

were euthanized and examined as tumors approached 20 mm

diameter. Macroscopic metastases, involving lymph nodes

and/or visceral organs, were visible in most mice (see Figures

5A–5H). This demonstrates that metastases can develop spon-

taneously in NSG mice with xenografted human melanomas.

To test whether CD271� and CD271+ melanoma cells form

tumors with different metastasis potentials, we established

subcutaneous tumors in NSG mice from CD271� or CD271+

melanoma cells isolated directly from patient 608. Tumors

were allowed to grow until they approached 20 mm in diameter

or until the mice became ill. When the mice were euthanized, the

tumors derived from CD271� and CD271+ cells had mean ± SD

diameters of 16 ± 8 mm and 17 ± 9 mm (p = 0.66), respectively,

and mean times since injection of cells of 26 ± 6 weeks and 26 ±

5 weeks (p = 0.85). Metastases were similarly evident in the

kidneys and lungs of all mice that developed subcutaneous

tumors, irrespective of whether the tumors derived from

CD271� or CD271+ cells (Figures 5I–5Q). CD271� and CD271+

melanoma cells from a xenograft derived from patient 205

were also injected in NSG mice, in this case without Matrigel.
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Figure 3. Staining with an Antibody against ABCB5

Is Variable among Melanomas and Does Not

Distinguish Tumorigenic from Nontumorigenic

Cells in NSG Mice

(A) Frequency of ABCB5+ cells versus frequency of tumor-

igenic cells in melanomas from nine patients. AJCC stage

is the American Joint Committee on Cancer clinical stage

of the patient at the time of melanoma removal. Frequency

of ABCB5+ cells indicates the percentage of cells that

stained above isotype control background by flow cytom-

etry. The frequency of tumorigenic cells in each tumor was

determined by either single cell or limiting dilution injec-

tions into NSG mice.

(B and C) Separation by flow cytometry of ABCB5� (blue)

and ABCB5+ (red) melanoma cells from patients 491 (B)

and 526 (C). Percentages indicate the frequency of cells

that stainedmore strongly than isotype control (left). Rean-

alyses of sorted cells is shown to the right. Each plot

shows viable, human HLA+ cells and excludes mouse

hematopoietic (CD45, TER119) and endothelial (CD31)

cells as described previously (Quintana et al., 2008).

(D) Tumor formation after injection into NSG mice of

unfractionated, ABCB5�, and ABCB5+ cells isolated as

in (B) and (C) from three different patients (308: n = 2 exper-

iments, 491: n = 1, 526: n = 1). Almost every injection of 10

ABCB5� cells or 10 ABCB5+ cells from these three mela-

nomas formed a tumor.

Cancer Cell
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In this experiment, distant metastaseswere evident in abdominal

structures (mesentery, ovaries, fallopian tubes, pararenal

tissues) of three of six mice with tumors arising from CD271�

cells and in two of five mice with tumors arising from CD271+

cells (Figure 5R). Some human melanomas spontaneously

metastasize in NSG mice, irrespective of whether they arise

from CD271� or CD271+ cells.

Other Markers Fail to Identify Nontumorigenic
Melanoma Cells
To identify markers that are heterogeneously expressed by

melanoma cells, we screened antibodies against 85 cell surface

markers in melanomas from 3 to 19 patients per marker (Table

S2). We were unable to detect the expression of 32 antigens,

including CD34 and SSEA-1 (CD15). Other markers appeared

to be nearly uniformly expressed by melanoma cells, including

CD63, which was only heterogeneously expressed in 4 of 13

tumors. Beyond ABCB5 (Figure 3), CD271 (Figure 4), and the

four heterogeneously-expressed markers we tested previously

(CD133, CD166, L1-CAM, and CD49f; [Quintana et al., 2008]),

we also compared the tumorigenic potential of melanoma

cells that differed in the expression of MCAM, E-Cadherin,

N-Cadherin, c-kit, CD29, CD44, CD49d, CD49b, A2B5, HNK-1,
Cancer Cell 18, 510–
CD54, CD9, CD151, CD10, L6, and CD49e (Fig-

ure 6). In each case, marker-negative/low and

marker-positive/high cells were separated by

flow cytometry from tumors derived from two

to three different patients (Figure 6A), and 10

cell aliquots were injected subcutaneously into

NSG mice. In no case did we observe clear

enrichment of tumorigenic activity in any frac-

tion of cells (Figure 6B). In two of three experi-
ments evaluating L6, tumors were more likely to arise from the

L6- fraction of cells; however, the less tumorigenic L6+ fraction

accounted for only 9% of cells. We have therefore been unable

to identify any large subpopulation of melanoma cells that lacks

tumorigenic activity or any small subpopulation that is enriched

for tumorigenic activity.

We also compared the growth rates of tumors to test whether

some markers distinguished tumorigenic fractions with intrinsi-

cally different growth rates. We compared the rate at which

tumors grew from 10 unfractionated cells, 10 marker-negative/

low cells, or 10 marker-positive/high cells for 22 different

markers: MCAM, E-Cadherin, N-Cadherin, ckit, CD29, CD44,

CD49d, CD49b, A2B5, HNK-1, CD54, CD133, CD166, L1-

CAM, CD49f, ABCB5, CD271, CD49e, CD9, CD10, CD151,

and L6 (Figure S2). For each marker, a total of 6 to 28 tumors

per cell fraction were generated from cells isolated from two to

four different patients per marker. In no case did we observe

a statistically significant difference in the rate at which tumors

grew from marker-negative/low versus marker-positive/high

fractions of cells. These data indicate there is extensive

phenotypic heterogeneity among melanoma cells that does not

correlate with differences in tumorigenic capacity or tumor

growth rate.
523, November 16, 2010 ª2010 Elsevier Inc. 515
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Figure 4. CD271 Expression Does Not Correlate with the Frequency of Tumorigenic Cells and Does Not Enrich Tumorigenic Melanoma Cells

(A) Frequency of CD271+ cells versus frequency of tumorigenic cells in melanomas obtained directly from 13 patients and from nine xenografted tumors

(%2 passages). NGFR5 and C40-1457 anti-human CD271 antibodies were compared side-by-side and gave similar results (data not shown).

(B) Linear regression analysis of the percentage of cells expressing CD271 in tumors from 15 patients, plotted against the frequency of tumorigenic cells in the

same tumors. r2 value (the Pearson correlation coefficient) indicates no correlation.

(C) Separation by flow cytometry of CD271� (blue) and CD271+ (red) melanoma cells from patients 597, 600, 608, 610, 631, 641, 491, 526, and 534. Reanalysis of

sorted cells is shown to the right. Each plot shows viable, human HLA+ cells and excludes human or mouse hematopoietic (CD45+, Glycophorin A or TER119+)

and endothelial (CD31+) cells.

(D) Tumor formation after injection into NSG mice of unfractionated, CD271� and CD271+ cells purified as in (C) directly from six patients or from three xeno-

grafted (%2 passages) tumors. Both CD271� and CD271+ cells readily formed tumors with similar efficiency when isolated from stage III or IV metastatic tumors

(600, 608, 631, and 641). CD271� cells were more tumorigenic in primary cutaneous tumors (597, p = 0.001; 610, p = 0.005), although the less tumorigenic

CD271+ cells accounted for only 2%–12% of cells in these tumors. See also Table S1.
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Figure 5. Spontaneous Metastasis of Human Melanomas in NSG Mice Irrespective of Whether They Derived from CD271– or CD271+ Mela-

noma Cells

(A–H) Spontaneous metastasis from a subcutaneous melanoma that arose from the injection of a single melanoma cell derived from a xenograft obtained from

patient 481. Fifteenweeks after injection, a subcutaneous tumor was observed at the site of injection (B–D) thatmetastasized to lymph nodes (not shown), ovaries

(E), pancreas (not shown), and liver (F). Immunostaining of the subcutaneous tumor (D), ovary (G), and liver (H) confirmed the presence of S100+ melanoma cells

(in brown).

(I–Q) Melanoma metastasis from subcutaneous tumors that arose from the transplantation of CD271� or CD271+ cells obtained directly from patient 608 (I).

Metastases developed in the kidneys (J, L, N, P) and lungs (K, M, O, Q) of NSG mice 23–32 weeks after transplantation, irrespective of whether CD271� (J–M)

or CD271+ (N–Q) cells were transplanted. Metastasis developed with similar efficiency from tumors derived from CD271� and CD271+ cells (I). Sections of kidney

(J, P) and lungs (K, Q) show infiltrated S100+ melanoma cells (in brown). Similar results were obtained when injecting unfractionated, CD271� or CD271+ cells

derived from xenografted tumors from patient 205, without Matrigel (R). Scale bars represent 1 cm (C, E, F, L–O) or 100 mm (D, G, H, J, K, P, Q).
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Many Phenotypically Diverse Melanoma Cells Can
Recapitulate Tumor Heterogeneity
The capacity of tumorigenic cells to recapitulate the phenotypic

heterogeneity of a parental tumor after transplantation is consid-

ered a defining characteristic of cancer stem cells. In contrast,

phenotypic heterogeneity that arises from clonal evolution might

lead to cells that form phenotypically distinct tumors that do not

recapitulate the parental tumor. Given that melanoma cells with

many different phenotypes were capable of forming tumors (Fig-

ure 3, Figure 4, and Figure 6), we testedwhether these cells reca-

pitulated the heterogeneity of parental tumors.

We evaluated the phenotypes of tumors that arose from

marker-defined fractions of cells in the experiments described

in Figures 3, 4, and Figure 6. For every marker tested, we found

that secondary tumors were phenotypically similar to the parent

tumor, irrespective of whether they arose from marker-negative/

low cells or marker-positive/high cells. For example, melanoma
Can
cells were isolated based on ABCB5 expression from a tumor

in which 3.8% of cells were ABCB5+ (Figure 7A). Both ABCB5+

and ABCB5� cells formed phenotypically similar tumors in

NSG mice that recapitulated the heterogeneity of the parent

tumor, with 4.2% to 5.4% of cells that were ABCB5+ (Figure 7A).

Similar results were observed in experiments that involved

CD166 (Figure 7B), A2B5 (Figure 7C), CD151 (Figure 7D), CD54

(Figure 7E), CD44 (Figure 7F), CD9 (Figure 7G), CD29 (Figure 7H),

N-Cadherin (Figure 7I), andCD271 (Figure 7J). This indicates that

many melanoma cells are capable of recapitulating tumor

heterogeneity after transplantation, irrespective of their pheno-

type at the time of transplantation. The capacity to recapitulate

melanoma heterogeneity is therefore widely shared by many

phenotypically diverse melanoma cells.

In some experiments, the marker-negative/low fraction and

the marker-positive/high fraction both gave rise to heteroge-

neous tumors, but the tumors that arose from the positive
cer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc. 517
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Figure 6. None of Sixteen Heterogeneously Expressed Markers Distinguished Tumorigenic from Nontumorigenic Melanoma Cells

(A) Analysis by flow cytometry of the heterogeneous expression of MCAM, CD29, A2B5, CD151, E-Cadherin, CD44, HNK1, CD10, N-Cadherin, CD49d, CD54, L6,

c-kit, CD49b, CD9, and CD49e. The expression of each marker was analyzed in xenografted tumors derived from at least nine different patients (see Table S2 for

details). Blue and red gates show the selection of marker�/low and marker+/high cells for transplantation studies (B), based on isotype labeling (indicated with

a vertical line in each plot).

(B) Tumor formation after injection into NSG mice of 10 unfractionated, 10 marker�/low, or 10 marker+/high cells isolated by flow cytometry from xenografted

tumors obtained from three to five different patients (except for CD10 and CD49e, which were tested in cells from two different patients). Tumors readily formed

from every fraction of cells such that no marker distinguished tumorigenic from nontumorigenic melanoma cells. See also Figure S2 and Table S2.
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fraction of cells contained a higher percentage of marker positive

cells. This was observed in some experiments performed with

CD271 (data not shown), CD49e (Figure 7K), CD49f (Figure 7L),

L1CAM (Figure 7M), E-cadherin (Figure 7N), and c-kit (Figure 7O).
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This suggests that there are sometimes genetic or epigenetic

differences among phenotypically distinct human melanoma

cells that bias the phenotype of the progeny they generate

without preventing tumorigenesis or the re-establishment of
.
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Figure 7. Many Phenotypically Distinct

Fractions of Melanoma Cells Can Recapitu-

late the Heterogeneity of the Tumors from

which They Derive

Expression of ABCB5 (A), CD166 (B), A2B5 (C),

CD151 (D), CD54 (E), CD44 (F), CD9 (G), CD29

(H), N-Cadherin (I), CD271 (J), CD49e (K), CD49f

(L), L1-CAM (M), E-Cadherin (N), and c-kit (O)

in parent tumors (upper left) compared with

expression in secondary tumors derived from

marker�/low and marker+/high fractions (top right

and bottom right, respectively). Bottom left panels

show reanalyses of the sorted cell fractions used

to generate secondary tumors. See also Figure S3.

Every marker was tested in two to four separate

melanomas, except for CD44, CD49f, E-Cadherin,

and c-kit, which were tested in one.
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heterogeneity. However, thiswas only observed in only aminority

of experiments, suggesting that such biases are not a major

driver of phenotypic heterogeneity.

The capacity of tumorigenic cells to recapitulate the heteroge-

neity of parental tumors has generally been testedwith only a few

(one to three) surface markers. We wondered whether analyses

of larger numbers of surface markers might reveal phenotypic

differences among tumors formed by phenotypically distinct

pairs of cells from the same parental tumor. To test this, we

analyzed some of the pairs of daughter tumors shown in Fig-

ure 7 with panels of 13–16 heterogeneously expressed surface

markers. ABCB5� and ABCB5+ cells not only formed secondary

tumors that were indistinguishable with respect to ABCB5
Cancer Cell 18, 510–523, N
expression, but these tumors were also

similar with respect to CD166, CD54,

L1-CAM, CD49b, CD49d, CD49f, A2B5,

CD271, HNK1, MCAM, E-Cadherin,

c-kit, CD44, CD133, and N-Cadherin

expression (Figure S3A). Similar results

were obtained with pairs of tumors

formed by CD271� and CD271+ cells

(Figure S3B), CD54� and CD54+ cells

(Figure S3C), c-kit� and c-kit+ cells (Fig-

ure S3D), L1-CAM� and L1-CAM+ cells

(Figure S3E), and CD44� and CD44+ cells

(Figure S3F). In a few cases, we observed

differences in the percentage of cells that

stainedwith individual markers. However,

most markers exhibited similar staining

patterns in secondary tumors, despite

being derived from the transplantation

of phenotypically distinct cells. These

results suggest many markers are revers-

ibly turned on and off within lineages of

tumorigenic melanoma cells.

DISCUSSION

Our experiments suggest that melanoma

does not adopt a hierarchy consisting of

a minor subpopulation of tumorigenic
cells and a majority population of nontumorigenic cells. Mela-

nomas consistently contained high frequencies of tumorigenic

cells, irrespective of whether they were primary cutaneous or

metastatic melanomas, whether they were from stage II, III,

or IV disease, and whether they were obtained directly from

patients or after xenografting (Table 1 and Figure 1A, Figure 3A,

and 4A). All tumorigenic cells appeared to have the capacity to

proliferate indefinitely on serial transplantation (Figure 2).

We have not been able to identify any marker that robustly

distinguishes tumorigenic from nontumorigenic melanoma

cells despite examining 85 markers and carefully studying the

tumorigenic potential of cells that differ in their expression

of 22 heterogeneously expressed markers, including ABCB5
ovember 16, 2010 ª2010 Elsevier Inc. 519
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(Figure 3), CD271 (Figure 4; Table S1) and CD133 (Shackleton

et al., 2009). For all of themarkers we studied, tumorswith similar

growth rates readily arose from all fractions of cells (Figure 6;

Figure S4). Despite subdividing melanoma cells using many

markers we have been unable to identify any large subpopulation

of melanoma cells that lacks tumorigenic potential. Thus, tumor-

igenic capacity is not restricted to a small subpopulation ofmela-

noma cells but is widely shared among phenotypically diverse

cells.

Many phenotypically distinct melanoma cells had the capacity

to form tumors that recapitulated the phenotypic diversity of

the tumors from which they derived (Figure 7; Figures S5–S10).

This suggests that tumorigenic cells appeared to undergo

reversible changes in the expression of many markers in vivo.

This contrasts with models that attribute phenotypic heteroge-

neity to the hierarchical differentiation of cancer stem cells into

nontumorigenic progeny or to irreversible genetic changes that

arise through clonal evolution.

Our results are compatible with the idea that tumorigenic

competence might reflect a reversible state in melanoma.

Studies of breast cancer cell lines have suggested that tumori-

genic activity correlates with the capacity to undergo an epithe-

lial to mesenchymal transition and that cells might reversibly

undergo such transitions (Mani et al., 2008). Studies of other

cell lines have suggested that therapy resistance can also reflect

a reversible state (Sharma et al., 2010). Recent studies of mela-

noma cell lines have indicated that the JARID1B histone deme-

thylase, Brn2, and pigment are reversibly turned on and off within

lineages of melanoma cells in a manner related to cell function

(Pinner et al., 2009; Roesch et al., 2010). Transient exposure of

glioblastoma cells to perivascular nitric oxide confers tumori-

genic competence and stem cell properties, raising the possi-

bility that these attributes reflect a reversible state in brain tumor

cells (Charles et al., 2010). These studies make the prediction

that in some cancers many cells will be capable of forming

phenotypically diverse tumors, without robust hierarchical orga-

nization. Our study comprehensively tests this prediction in

tumors from patients in vivo, finding that many phenotypic differ-

ences among melanoma cells reversibly change within lineages

of tumorigenic cells rather than being hierarchically organized.

Although no marker robustly distinguished tumorigenic from

nontumorigenic melanoma cells, we observed little tumorigenic

activity among CD271+ cells from two primary cutaneous mela-

nomas. In this regard, our data are similar to results from primary

mouse melanomas (Held et al., 2010) in that both studies found

tumorigenic activity in a high percentage of single cells, but

CD271� cells were more likely to form tumors. However, neither

our results nor the results from Held et al. (2010) were consistent

with the cancer stem cell model because Held et al. (2010) found

that the tumorigenic cells they studied often did not recapitulate

the heterogeneity of parental tumors, and the CD271+ cells with

limited tumorigenic activity in two tumors in our study repre-

sented only 2%–12% of tumor cells, a minor subpopulation of

cancer cells.

Our results with CD271 are different from the results reported

by Boiko et al. (2010) even though both studies used the same

anti-CD271 antibody, both studied a similar spectrum of mela-

noma stages (mainly stage III), and both studied a combination

of xenografted tumors and tumors obtained directly from
520 Cancer Cell 18, 510–523, November 16, 2010 ª2010 Elsevier Inc
patients. The most obvious potential explanation for the differ-

ence in results lies in the different assays used in the two studies:

different enzymatic dissociation conditions (25 min in our study

versus up to 3 hr in their study), different injection sites (subcuta-

neous versus intradermal), and different recipient mice (NSG

versus Rag�/�IL2Rg�/�). An average of 1 in 50,000 unfractio-

nated melanoma cells formed tumors in the study carried

out by Boiko et al. (2010) (using four stage III, one stage IV,

and one stage II melanoma, see Table S3 in Boiko et al., 2010).

In contrast, when we transplanted unfractionated melanoma

cells directly from six stage III patients in our prior study, an

average of one in four cells formed tumors (Quintana et al.,

2008). In our current study, an average of 28% of single, unfrac-

tionated melanoma cells obtained directly from five stage III

melanoma patients (Table 1) and 17% (one in six) of melanoma

cells obtained directly from a stage II melanoma patient (Table 1)

formed tumors. Thus, the assaywe used appears to be�10,000-

fold more sensitive than the assay used by Boiko et al. (2010).

Using this more sensitive assay, we find that CD271� cells

have at least as much ability to form tumors as CD271+ cells.

It will now be critical for other labs to independently assess

whether they also observe tumor formation by CD271� mela-

noma cells.

Although our results argue against the cancer stem cell model

in melanoma, they do not mean that other cancers do not follow

a stem cell model. We and others have found that most chronic

myeloid leukemias (Eisterer et al., 2005; Jamieson et al., 2004;

Neering et al., 2007; Oravecz-Wilson et al., 2009) and acute

myeloid leukemias (Bonnet and Dick, 1997; Lapidot et al.,

1994; Yilmaz et al., 2006) do follow a cancer stem cell model in

which leukemogenic cells are rare, phenotypically distinct from

the vast majority of other leukemia cells, and robustly hierarchi-

cally organized. It will be critical to determine which cancers

follow a stem cell model andwhich do not, so therapies designed

to target rare subpopulations of cells are not inappropriately

tested in patients whose disease is driven by many diverse

cancer cells.

If a marker is identified in future that robustly distinguishes

tumorigenic from nontumorigenic melanoma cells, melanoma

would still be quite different from cancers, such as myeloid

leukemia, that follow a stem cell model. Our observation that

many markers are reversibly expressed by tumorigenic mela-

noma cells contrasts with the obvious morphologic and pheno-

typic differences between leukemogenic and non-leukemogenic

cells. Thus, even if some melanomas do contain a hierarchy,

it would be a shallow hierarchy that includes abundant and

diverse tumorigenic cells rather than a steep hierarchy driven

by rare tumorigenic cells, as described so far in cancers found

to follow a stem cell model.

Some have suggested that cancer stem cells might be

distinguished from nontumorigenic cancer cells by reduced

immunogenicity, allowing them to proliferate more extensively

by escaping immune detection (Schatton and Frank, 2009).

However, this hypothesis is not testable in human cancers

because they cannot be transplanted autologously into patients

or into immunocompetent mice. Immunocompetent mice mount

a powerful xenogeneic immune response against human cells,

making it impossible to assess whether a failure to engraft

reflects immune rejection or an intrinsic lack of tumorigenic
.
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capacity. Furthermore, no xenotransplantation model recapitu-

lates the autologous anticancer immune response that occurs

in some patients against their own cancers because the xenoge-

neic immune response is far more powerful and driven by very

different mechanisms than autologous immune responses. For

these reasons, 30 years of research has found that the preferred

system for studying the potential of normal human hematopoi-

etic stem cells (Ito et al., 2002; Shultz et al., 2005) and human

leukemic stem cells (Agliano et al., 2008; Sanchez et al., 2009)

is NSG mice that are not only highly immunocompromised,

but also irradiated to further promote the engraftment of human

cells. The failure of human hematopoietic stem cells and

leukemic stem cells to engraft in immunocompetent mice does

not mean these cells are normally regulated by autologous

immune responses in patients because the xenogeneic immune

response that rejects these cells from mice involves very

different mechanisms.

To identify the spectrum of human cancer cells that have the

potential to contribute to disease, these cells must be studied

in highly immunocompromised mice. Once the spectrum of cells

capable of contributing to disease is identified, a separate and

context-dependent question concerns which of these cells are

actually fated to contribute to disease in a patient. This question

can only be addressed in mouse cancers because no xenograft

model reflects the anticancer immune response, or certain other

aspects of the environment, in patients.

Our results demonstrate that phenotypic heterogeneity in

melanomas obtained from patients is largely driven by reversible

changes in a broad range of markers that turn on and off

within lineages of tumorigenic cells. This phenotypic plasticity

contrasts with both the cancer stem cell and clonal evolution

models, which largely attribute heterogeneity to irreversible

epigenetic and genetic changes. Although clonal evolution

occurs inmany cancers, includingmelanoma, and some cancers

follow a stem cell model, our results raise the possibility that

pervasive phenotypic plasticity is an independent source of

heterogeneity in some cancers.

EXPERIMENTAL PROCEDURES

Tumor Cell Preparation

Melanoma specimens were obtained with informed consent from all patients

according to protocols approved by the Institutional Review Board of the

University of Michigan Medical School (IRBMED approvals 2004-1058 and

2000-0713). Tumors were mechanically dissociated with a McIlwain tissue

chopper (Mickle Laboratory Engineering, Guilford, UK) before sequential enzy-

matic digestion in 200 U/ml collagenase IV (Worthington, Lakewood, NJ) for

20 min followed by 0.05% trypsin-EGTA for 5 min, both at 37�C. DNase (50–

100 U/mL) was added to reduce clumping of cells during digestion. Cells

were filtered (40 mm cell strainer) to obtain a single cell suspension. Dead cells

and debris were reduced by density centrifugation (1.1 g/ml Optiprep; Sigma,

St. Louis, MO) when necessary. To test ABCB5 expression, single cell suspen-

sionswere derived after incubation ofmechanically dissociated tumor tissue in

10 ml sterile PBS containing 0.1 g/L calcium chloride and 5 ug/ml Collagenase

Serva NB6 (SERVA Electrophoresis GmbH) for 3 hr at 37�C (Schatton et al.,

2008).

Cell Labeling and Flow Cytometry

All antibody staining was carried out for 20min on ice, followed bywashing and

centrifugation. A list of primary antibodies is in Table S2. Anti-ABCB5 antibody

(clone 3C2-1D12) was a gift from Markus Frank. Secondary antibodies were

conjugated to phycoerythrin (goat anti-mouse IgG or IgM, goat anti-rat IgG,
Can
or goat anti-rabbit IgG; Jackson ImmunoResearch, West Grove, PA). Primary

isotype controls followed by the same secondary antibodies were used to

set background. Cells were subsequently stained with directly conjugated

antibodies to humanCD45 (HI30-APC; BDBiosciences, San Jose, CA), human

CD31 (WM59-APC; eBiosciences, San Diego, CA), and Glycophorin A (HIR2-

APC; Biolegend, San Diego, CA) (for tumors obtained directly from patients) or

mouse CD45 (30-F11-APC; eBiosciences), mouse CD31 (390-APC; Biole-

gend), mouse Ter119 (TER-119-APC; eBiosciences) and human HLA-A,B,C

(G46-2.6-FITC; BD Biosciences) (for xenograft tumors) to select live human

melanoma cells and to exclude endothelial and hematopoietic cells. Cells

were resuspended in 10 mg/ml DAPI (Sigma) and analyzed and/or sorted on

a FACSAria Cell Sorter (Becton Dickinson, San Jose, CA). After sorting, an

aliquot of sorted cells was always reanalyzed to check for purity, which was

usually >95%.

Transplanting Melanoma Cells

After sorting, cells were counted and resuspended in staining medium (L15

medium containing 1 mg/ml BSA, 1% penicillin/streptomycin and 10 mM

HEPES [pH7.4]) with 25% high protein Matrigel (product 354248; BD Biosci-

ences). Subcutaneous injections of human melanoma cells were performed

in each flank and the interscapular region of NOD.CB17-Prkdcscid

Il2rgtm1Wjl/SzJ (NOD/SCID IL2Rgnull, NSG) mice (Jackson Laboratories)

according to protocols approved by the Committee on the Use and Care of

Animals at the University of Michigan (protocol 9055). Tumor formation

was evaluated regularly after injection by palpation of injection sites, and

tumor diameters were measured with calipers. The presence of human mela-

nomas was confirmed at necropsy by gross appearance, histology, and

immunohistochemistry.

Injection of Single Melanoma Cells

Single cells were isolated and identified using methods described previously

(Quintana et al., 2008). Briefly, sorted melanoma cells were diluted and ali-

quoted into 10- ml microwells (Thermo Fisher Scientific, Roskilde, Denmark).

Plates were centrifuged at 450 3 g for 30 s, and wells containing single cells

were identified by phase microscopy. Cell doublets could be identified easily,

were rare, and were discarded. Each single cell was drawn into a syringe con-

taining high protein Matrigel (product 354248, BD Biosciences), the well was

visually confirmed to no longer contain the cell, and the cell was injected

into a NSG mouse as described above.

Histopathology and Immunostaining

Portions of melanoma tumors and mouse organs used in experiments were

fixed in 10% neutral buffered formalin, paraffin embedded, sectioned, and

stained with hematoxylin and eosin for histopathology analysis. Paraffin-

embedded tumors were confirmed as melanomas by staining for S100

expression after quenching endogenous peroxidase activity. Binding of anti-

S100 antibody (DAKO) was carried out for 30 min at room temperature,

detected by anti-rabbit secondary (30 min at room temperature) and

revealed using DAB Chromagen. S100-stained slides were counterstained

with hematoxylin.

Statistics

Tumor growth rates were determined by maximum tumor diameter (in mm) at

euthanasia divided by elapsed time (in weeks) from injection. Differences

between mean growth rates were compared using unpaired Student’s t tests.

Correlations between tumor growth rates (Figure 1B) or CD271+ cell frequen-

cies (Figure 4B) and tumorigenic cell frequencies were carried out by linear

regression analysis using GraphPad Prism 3.0 software. Limiting dilution anal-

yses were carried out using ELDA: Extreme Limiting Dilution Analysis (Hu and

Smyth, 2009). Melanoma-initiating cell frequencies were compared using like-

lihood ratio tests. Statistical significance was defined as p < 0.05.
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